伺服电机振动检测异常(伺服电机静止状态振动怎么解决)

  交流伺服系统包括:伺服驱动器、伺服电机和一个反馈传感器。以下对交流伺服电机振动故障的分析主要从机械方面和电气方面进行。

电机

  机械方面

  1、轴承

  丝杠轴承座上的轴承磨损后间隙过大,或者轴承缺少润滑脂后轴承滚动体和保持架磨损严重造成负载过重。轴承磨损后间隙过大会造成电机转子中心和丝杠中心存在同轴度误差,使机械系统产生抖动。轴承滚动体和保持架磨损严重会造成摩擦力增加导致“堵转”,“堵转”在不至于导致“过载报警”的情况下,由于负载过重,会增加伺服系统的响应时间产生振动。

  2、电机转子不平衡

  电机转子的动平衡制造时有缺陷或使用后变差,就会产生形如“振动电机”一样的振动源。

  3、转轴弯曲

  转轴弯曲的情况类似于转子不平衡,除了会产生振动源也会产生电机转子中心和丝杠中心的同轴度误差,使机械传动系统产生抖动。

  4、联轴器

  联轴器制造缺陷或使用后磨损会造成联轴器两部分的同轴度误差,特别是使用铸造的刚性联轴器,由于本身的制造精度差,更容易产生同轴度误差导致振动。

  5、导轨的平行度

  导轨的平行度在制造时较差会导致伺服系统无法到达指定位置或无法停留在指定位置,这时伺服电机会不停的在寻找位置,使电机连续的振动。

  6、丝杠与导轨平面的平行度误差

  丝杠与导轨平面的平行度误差,丝杠在安装过程中与导轨所在平面有平行度误差也会使电机由于负载不均匀产生振动。

  7、丝杠弯曲

  丝杠弯曲后丝杠除了受到轴向推力外还会受到变化的径向力,弯曲大时径向力大,弯曲小时径向力小,同样这种不应该存在的径向力也会使机械传动系统产生振动。

  电气方面

  导致交流伺服电机电气方面的原因主要是伺服驱动器的参数调整上。

  1、负载惯量

  负载惯量的设置一般与负载的大小有关,过大的负载惯量参数会使系统产生振动,一般的交流伺服电机可以自动测量系统的负载惯量。

  2、速度比例增益

  设置值越大,增益越高,系统刚度越大,参数值根据具体的伺服驱动器型号和负载情况确定,一般情况下,负载惯量越大,设定值越大,在系统不产生振动的情况下,设定值尽量较大,但是增益越大,偏差越小,越容易产生振动。

  3、速度积分常数

  一般在系统不产生振动的情况下,设定值尽量较小,设置值越小,积分速度越快,系统抵抗偏差越强,即刚度越大,但太小容易产生超调,使电机产生振动。

  4、位置比例增益

  设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小,数值太大可能会引起电机振动。

  5、加速度反馈增益

  电机不转时,很小的偏移会被速度环的比例增益放大,速度反馈产生相应的转矩,使电机来回抖动。

  根据现场判断

  知道了哪些方面会导致交流伺服电机产生振动故障,实际维修中如何将故障范围进一步缩小进而锁定故障原因是个难点,需要结合具体的现场信息来综合判断。

  1、故障发生在新设备开机调试后

  发生在这个时段内的故障最复杂,可能是由于机械制造方面的原因,也有可能是参数调整不正确的原因,需要一步步的排除,排除的原则是先排除简单的原因,后排除复杂的,如果是数控系统装有两台以上相同的驱动器和交流伺服电机,其中一台电机产生振动,可以采用最简单的“对换法”将两台交流伺服电机的伺服驱动器对换,利用此法可以快速判断问题是否出在伺服驱动器参数设置上。

  2、故障发生在设备运行使用很长时间以后

  这种情况基本可以排除伺服驱动器参数设置问题,因为如果参数设置不当,早就应该反映出问题了。

  3、故障发生在刚刚开机后

  如果刚刚开机交流伺服电机就产生振动,这种情况下可以确定是在数控系统自动寻找机床原点时发生了机械卡阻导致电机不能到达指定位置或到达指定位置后产生反复,这种情况下一般是机械故障。

  4、故障发生在机床正在加工工件时

  这样的情况首先考虑是由于加工时负载增加而导致的振动,围绕负载增加检查原因。

  5、故障连续规律发生或断续无规律发生

  故障连续发生时说明导致电机振动的故障原因一直存在,而断续无规律发生时说明导致电机振动的故障原因有时会发生变化,这种情况如果负载没有很大的变化基本可以排除伺服驱动器参数设置的原因。

  导致交流伺服电机的振动故障是多方面复杂的原因,从实际操作中总结发现机械故障或机械故障导致的电机故障原因比例较大,在排除这类故障时需要掌握交流伺服系统的工作原理,了解哪些原因容易引起电机振动故障,同时结合现场情况综合判断,才能彻底解决交流伺服电机的振动故障。

电机

  特别说明:

  此文章系转发,版权归原作者所有!如果您认为某些内容侵犯了您的权益,请与我们联系!我们核实后将立即修订!

本文版权归原作者所有,同心智造网(www.cn-im.cn)转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

(1)
上一篇 2021年12月18日 下午12:49
下一篇 2022年1月1日 下午12:49

相关推荐

扫码关注
扫码关注
加入社群
加入社群
QQ咨询
分享本页
返回顶部